A Method for Co-Evolving Morphology and Walking Pattern of Biped Humanoid Robot
نویسندگان
چکیده
In this paper, we present a method for co-evolving structures and controller of biped walking robots. Currently, biped walking humanoid robots are designed manually on trial-and-error basis. Although certain control theory exists, such as zero moment point (ZMP) compensation, these theories assume humanoid robot morphology is given in advance. Thus, engineers have to design control program for apriori designed morphology. If morphology and locomotion are considered simultaneously, we do not have to spare time with trial-and-error. Therefore a method useful for designing the robot is proposed . At first, the simple models of both morphology and controller are used for the dynamic simulation, which are multi-link model as morphology and two kinds of controllers. One is a layered neural network and the other is neural oscillator. The robots with the optimal energy efficiency of walking are designed with Genetic Algorithm. As a result, various combinations of morphologies and gaits are generated, and obtained relationship between length of each link and moving distance which gives the optimal energy efficiency. Moreover, the robots are encoded from limited size of chromosomes. Keywords—Biped Walking, Genetic Algorithm, Neural Network, Oscillator.
منابع مشابه
Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk
Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملCo-evolution of morphology and walking pattern of biped humanoid robot using evolutionary computation. Consideration of characteristic of the servomotors
In this paper, we present a method for co-evolving morphology and controller of bi-ped humanoid robots. Currently, bi-ped walking humanoid robots are designed manually on trial-and-error basis. Thus, engineers have to design control program for apriori designed morphology, neither of them shown to be optimal within a large design space. We propose evolutionary approach that co-evolves the morph...
متن کاملOnline Walking Pattern Generation for Biped Humanoid Robot with Trunk
This paper describes an online method generating walking patterns for biped humanoid robots having a trunk. Depending on the walking command, the motion patterns of the lower-limbs are created and connected to the prewalking patterns smoothly in online. For the stability of the biped robots, the trunk and the waist motion is generated by a walking stabilization control that is based on the ZMP ...
متن کاملWalking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor
This paper describes walking control algorithm for the stable walking of a biped humanoid robot on an uneven and inclined floor. Many walking control techniques have been developed based on the assumption that the walking surface is perfectly flat with no inclination. Accordingly, most biped humanoid robots have performed dynamic walking on well designed flat floors. In reality, however, a typi...
متن کامل